ANALYTICAL REPORT

Cyclopentyl-F (C25H32N2O)

N-phenyl-N-[1-(2-phenylethyl)piperidin-4-yl]cyclopentanecarboxamide

Remark – other NPS detected: none

Sample ID: 1661-16
Sample description: powder
Sample type: test purchase /RESPONSE -purchasing
Date of sample receipt (M/D/Y): 8/30/2016
Date of entry (M/D/Y) into NFL database: 3/6/2017
Report updates (if any) will be published here:

Substance identified - structure (base form)

Systematic name: N-phenyl-N-[1-(2-phenylethyl)piperidin-4-yl]cyclopentanecarboxamide
Other names: Cyclopentyfentanyl; Cyclopentyl fentanyl, CPF
Formula (per base form): C25H32N2O
M_w (g/mol): 376,54
Salt form/anions detected: oxalate
StdInChIKey (per base form): PEASFKSPITUZGT-UHFFFAOYSA-N
Other NPS detected: none
Additional info (purity..)

1 This report has been produced with the financial support of the Prevention of and Fight against Crime Programme of the European Union (grant agreement number JUST/2013/ISEC/DRUGS/AG/6413). The contents of this report are the sole responsibility of the National Forensic Laboratory and can in no way be taken to reflect the views of the European Commission.

2 Created by OPSIN free tool: http://opsin.ch.cam.ac.uk/ DOI: 10.1021/ci100384d
Instrumental methods (if applied) in NFL

1. GC-MS (Agilent): GC-method is RT locked to tetracosane (9.258 min). Injection volume 1 ml and split mode (1:50). Injector temperature: 280 °C. Chromatographic separation: on column HP1-MS (100% dimethylpolysiloxane), length 30 m, internal diameter 0.25 mm, film thickness 0.25 μm. Carrier gas He: flow-rate 1.2 ml/min. GC oven program: 170 °C for 1 min, followed by heating up to 190 °C at rate 8 °C/min, then heating up to 293 °C at a rate of 18 °C/min, hold for 7.1 min, then heating at 50 °C/min up to 325 °C and finally 6.1 min isothermal. MSD source EI = 70 eV. GC-MS transfer line T= 235 °C, source and quadropole temperatures 280 °C and 180 °C, respectively. Scan range m/z scan range: from 50 (30 until 6 min.) to 550 (300 until 6 min) amu.

2. HPLC-TOF (Agilent): 6230B TOF with Agilent 1260 Infinity HPLC with binary pump, column: Zorbax Eclipse XDB-C18, 50 x 4.6 mm, 1.8 micron. Mobile phases (A) 0.1% formic acid and 1mM ammonium formate in water; (B) 0.1% formic acid in methanol (B). Gradient: starting at 5% B, changing to 40% B over 4 min, then to 70% over 2 min and in 5 min to 100%, hold 1 min and back to 5%, equilibration for 1.7 min. The flow rate: 1.0 ml/min; Injection volume 1 μl. MS parameters: 2GHz, Extended Dynamic range mode to a maximum of 1700 amu, acquisition rate 1.30 spectra/sec. Sample ionisation: by Agilent Jet Stream technology (Dual AJS ESI). Ion source: positive ion scan mode with mass scanning from 82 to 1000 amu. Other TOF parameters: drying gas (N2) and sheath temperature 325 °C; drying gas flow rate 6 l/min; sheath gas flow rate 8 l/min; nebulizer 25 psig; Vcap. 4000 V; nozzle 2000 V; skimmer 65 V; fragmentor 175 V and Octopole RF 750 V.

3. FTIR-ATR (Perkin Elmer): scan range 4000-400 cm⁻¹; resolution 4cm⁻¹

4. GC-(MS)-IR condensed phase (GC-MS (Agilent) & IR (Spectra analyses-Danny)
MSD source EI = 70 eV. GC-MS transfer line T= 235 °C, source and quadropole temperatures 280 °C and 180 °C, respectively. Scan range m/z scan range: from 50 (30 until 6 min.) to 550 (300) amu. IR (condensed (solid) phase): IR scan range 4000 to 650, resolution 4 cm⁻¹.

5. IC (anions) (Thermo Scientific, Dionex ICS 2100), Column: IonPac AS19, 2 x 250mm; Eluent: 10mM from 0 to 10 min, 10-58 mM from 10 to 40min; Flow rate: 0.25 ml/min; Temperature: 30 °C; Suppressor: AERS 500 2mm, suppressor current 13mA; Inj. Volume: 25 µl

<table>
<thead>
<tr>
<th>date</th>
<th>comments (explanation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18/05/2017</td>
<td>Empirical formula corrected.</td>
</tr>
</tbody>
</table>
Supporting information

<table>
<thead>
<tr>
<th>Solubility in</th>
<th>result/remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₂Cl₂</td>
<td>partially</td>
</tr>
<tr>
<td>MeOH</td>
<td>soluble</td>
</tr>
<tr>
<td>H₂O</td>
<td>partially</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analytical technique:</th>
<th>applied</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC-MS (EI ionization)</td>
<td>+</td>
<td>NFL GC-RT (min): 13,74
BP(1): 285; BP(2): 69; BP(3): 189,</td>
</tr>
<tr>
<td>HPLC-TOF</td>
<td>+</td>
<td>Exact mass (theoretical): 376,2515; measured value Δppm: 0.56; formula: C₂₅H₃₂N₂O</td>
</tr>
<tr>
<td>FTIR-ATR</td>
<td>+</td>
<td>direct measurement (sample as received)</td>
</tr>
<tr>
<td>FTIR (condensed phase)</td>
<td>+</td>
<td>always as base form</td>
</tr>
<tr>
<td>IC (anions)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>NMR (in FKKT)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>validation</td>
<td></td>
<td>MS consistent by the one published in EMCDDA EDND by Sweden</td>
</tr>
<tr>
<td>other</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL RESULTS

MS (EI)

Abundance

Scan 2609 (13.736 min): KEM-ID_1661-16.D

MS-explained (red and green labeled peaks)

MS-explained (red and green labeled peaks)
FTIR-ATR - direct measurement (sample as received)

IR (condensed phase – after chromatographic separation)

NOTE: This is condensed phase IR (as base form of substance) Instrument (Discover-GC)
Compound Table

<table>
<thead>
<tr>
<th>Label</th>
<th>Compound Name</th>
<th>MFG Formula</th>
<th>Obs. RT</th>
<th>Obs. Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2SH32N2O (received as cyclopentyl-F)</td>
<td>C25H32N2O (received as cyclopentyl-F)</td>
<td>C25 H32 N2 O</td>
<td>7.12</td>
<td>376.2517</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Obs. m/z</th>
<th>Obs. RT</th>
<th>Obs. Mass</th>
<th>DB RT</th>
<th>DB Formula</th>
<th>DB Mass</th>
<th>DB Mass Error (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2SH32N2O (received as cyclopentyl-F)</td>
<td>377.2589</td>
<td>7.12</td>
<td>376.2517</td>
<td>7.12</td>
<td>C25 H32 N2 O</td>
<td>376.2515</td>
<td>-0.56</td>
</tr>
</tbody>
</table>

Compound Chromatograms

MS Spectrum Peak List

<table>
<thead>
<tr>
<th>Obs. m/z</th>
<th>Charge</th>
<th>Abund</th>
<th>Formula</th>
<th>Ion/Isotope</th>
</tr>
</thead>
<tbody>
<tr>
<td>377.2589</td>
<td>1</td>
<td>6255873</td>
<td>C25 H32 N2 O</td>
<td>(M+H)+</td>
</tr>
<tr>
<td>376.2522</td>
<td>1</td>
<td>1715430.4</td>
<td>C25 H32 N2 O</td>
<td>(M+H)+</td>
</tr>
<tr>
<td>379.2555</td>
<td>1</td>
<td>226304.78</td>
<td>C25 H32 N2 O</td>
<td>(M+H)+</td>
</tr>
<tr>
<td>380.2683</td>
<td>1</td>
<td>21549.87</td>
<td>C25 H32 N2 O</td>
<td>(M+H)+</td>
</tr>
<tr>
<td>381.2667</td>
<td>1</td>
<td>15893.89</td>
<td>C25 H32 N2 O</td>
<td>(M+H)+</td>
</tr>
<tr>
<td>399.2405</td>
<td>1</td>
<td>15039.89</td>
<td>C25 H32 N2 O</td>
<td>(M+Na)+</td>
</tr>
<tr>
<td>400.244</td>
<td>1</td>
<td>4571.63</td>
<td>C25 H32 N2 O</td>
<td>(M+Na)+</td>
</tr>
<tr>
<td>401.244</td>
<td>1</td>
<td>987.13</td>
<td>C25 H32 N2 O</td>
<td>(M+Na)+</td>
</tr>
</tbody>
</table>

--- End Of Report ---
Peak Integration Report

Sample Name: 1661-16_IC
Injection Type: Unknown
Program: ANIONI
Operator: kemija
Inj. Date / Time: 01-sep-2016 / 10:31
Run Time: 42,00

<table>
<thead>
<tr>
<th>No.</th>
<th>Time min</th>
<th>Peak Name</th>
<th>Peak Type</th>
<th>Area µS*min</th>
<th>Height µS</th>
<th>Amount mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,00</td>
<td>21,59</td>
<td>Oxalate</td>
<td>BMB</td>
<td>2,78</td>
<td>11,05</td>
<td>n.a.</td>
</tr>
<tr>
<td>TOTAL:</td>
<td></td>
<td></td>
<td></td>
<td>2,78</td>
<td>11,05</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Chart:

- Peak 1: Oxalate at 21.59 min

Report Details:

- **Injection Volume:** 25.00
- **Dilution Factor:** 1,0000
- **Injection Date / Time:** 01-sep-2016 / 10:31
- **Run Time:** 42.00

- **Program:** ANIONI
- **Operator:** kemija

Sample Name: 1661-16_IC

- **Peak Integration Report**

Anions-report template/Integration

Anions-report template/Integration

Chromleon (c) Dionex 1996-2009
Version 7.2.0.3765
REPORT

<table>
<thead>
<tr>
<th>Sample ID:</th>
<th>1661-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our notebook code:</td>
<td>P-1661-16</td>
</tr>
<tr>
<td>NMR sample preparation:</td>
<td>15 mg dissolved in 0.7 mL DMSO-(d_6)</td>
</tr>
<tr>
<td>NMR experiments:</td>
<td>(^1)H, (^13)C, (^1)H–(^1)H gs-COSY, (^1)H–(^13)C gs-HSQC, (^1)H–(^13)C gs-HMBC, (^1)H–(^15)N gs-HMBC.</td>
</tr>
</tbody>
</table>

Proposed structure:

![Proposed Structure Image]

Chemical name: \(N\)-(1-phenethylpiperidin-4-yl)-\(N\)-phenylcyclopentanecarboxamide

Comments:
- Structure elucidation based on 1D and 2D NMR spectra
- Sample is not pure as evident by NMR; it contains oxalate (signals in \(^1\)H NMR around 5 and in \(^13\)C NMR at 164.7 ppm) and also some other minor impurities.

Supporting information: Copies of \(^1\)H and \(^13\)C NMR spectra

Author: Prof. Dr. Janez Košmrlj, Doc. Dr. Krištof Kranjč

Date of report: April 9, 2017

This report has been produced with the financial support of the Prevention of and fight against crime Programme of the European Union (grant agreement number JUST/2013/ISEC/DRUGS/AG/6413). The contents of this publication are the sole responsibility of the Author and can in no way be taken to reflect the views of the European Commission.
Current Data Parameters

NAME: P-1661-16
EXPNO: 1
PROCNO: 1

F2 - Acquisition Parameters
Date: 20160912
Time: 18.19
INSTRUM: spect
PROBHD: 5 mm PABBO BB-
PULPROG: zg30
TD: 65536
SOLVENT: DMSO
NS: 16
DS: 2
SWH: 10000.000 Hz
FIDRES: 0.152588 Hz
AQ: 3.2768500 sec
RG: 71.8
DW: 50.000 usec
DE: 6.50 usec
TE: 300.0 K
D1: 1.00000000 sec
TD0: 1

======== CHANNEL f1 ========
SFO1: 500.1330885 MHz
NUC1: 1H
P1: 8.90 usec
PLW1: 26.00000000 W

F2 - Processing parameters
SI: 65536
SF: 500.1300000 MHz
WDW: EM
SSB: 0
LB: 0.30 Hz
GB: 0
PC: 1.00

2.05 8.08 1.96 0.99 2.00 1.98 1.97 1.97 1.31 5.01 2.08 3.00
Current Data Parameters

NAME P-1661-16
EXPNO 3
PROCNO 1

F2 - Acquisition Parameters
Date_ 20160912
Time 22.02
INSTRUM spect
PROBHD 5 mm PABBO BB-
PULPROG zgpg30
TD 65536
SOLVENT DMSO
NS 4096
DS 4
SWH 29761.904 Hz
FIDRES 0.454131 Hz
AQ 1.1010048 sec
RG 2050
DW 16.800 usec
DE 6.50 usec
TE 300.0 K
D1 2.00000000 sec
D11 0.03000000 sec
TD0 1

======== CHANNEL f1 ========
SFO1 125.7703637 MHz
NUC1 13C
P1 9.00 usec
PLW1 122.00000000 W

======== CHANNEL f2 ========
SFO2 500.1320005 MHz
NUC2 1H
CPDPRG[2 waltz16
PCPD2 80.00 usec
PLW2 26.00000000 W
PLW12 0.32179001 W
PLW13 0.16186000 W

F2 - Processing parameters
SI 32768
SF 125.7577885 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 0
PC 1.40